
Photonic

W. Luis Mochán Backal

Instituto de Ciencias Físicas, UNAM, México

London Perl & Raku Workshop
London, UK, October 26, 2024



Collaborators

Andrea López Reyna
Raksha Singla
Lucila Juárez
José Samuel Pérez
Bernardo Mendoza
Guillermo P. Ortiz

Ed mohawk2 (many improvements, contributions,
suggestions, optimizations, modularization,. . . )

(Thanks to DGAPA-UNAM IN109822)



What is it?

A package to compute the optical properties of metamaterials
and photonic crystals.

Public domain
Github
CPAN

Using
Perl
PDL
Moo



Metamaterials
Example: split rings

Material made from a mixture of particles of ordinary materials,
properties usually differ from those of its components.

LC like resonances in ϵ, µ.
Can have ϵ < 0 and µ < 0, but n2 = ϵµ > 0, i.e., real index of
refraction, propagation of e.m. waves.
Exotic behavior from mix of ordinary materials, negative index
of refraction n < 0.
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Left-handed materials

k2 = ϵµ
ω2

c2

If ϵ < 0 y µ < 0, k is real =⇒ propagating field.

E

B
k

H
S

but S (energy flux) would be opposite to k (phasae
velocity). Group velocity opposes phase velocity.



Negative refraction
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Metasurfaces

Lateral phase controlled through geometry-dependent
resonances. Controllable, polarization dependent
refraction, beyond Snell’s law.
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Photonic crystals
Superlattice

Photonic bands/gaps

ω

k π/d−π/d
k → k ± 2π/d

ϵa
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Photonic crystals
Absolute gap
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The problem

The optical properties of
these materials is
determined not only by
their composition,
but also by their geometry
(size, shape).
¿How to calculate them?
Effective response.
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Theory
Macroscopic is not any average

D = ϵE
⟨D⟩ ≡ DM = ϵMEM ≡ ϵM ⟨E⟩
ϵM ̸= ⟨ϵ⟩ as ⟨ϵE⟩ ≠ ⟨ϵ⟩⟨E⟩
⟨ϵ⟩ is meaningless
Find some operator whose average does have a meaning.
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Macroscopic response
Example: Small scale, no retardation, longitudinal response

DL obeys the same equations with the same sources as
the external longitudinal E field: ∇× DL ≡ 0,
∇ · DL = 4πρex .
DL is the external longitudinal Eex field.
DL has no spatial fluctuations induced by the texture.
EL = (ϵLL)−1DL

EL
a = (ϵLL)−1

aa DL
a

(ϵLL
M )−1 = (ϵLL)−1

aa

The macroscopic response to an external excitation is
simply the average of the corresponding microscopic
response.
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Periodic binary system

ϵ(r) =
{
ϵB if r ∈ inclusion,
ϵA if r ∈ matrix

Characteristic function of unit cell

B(r) =
{

1 if r ∈ inclusion,
0 if r ∈ host

(geometry)

ϵ(r) = (ϵA − ϵABB(r)) = ϵAB(u − B(r))
ϵAB = ϵA − ϵB

Spectral variable u ≡ (1 − ϵB/ϵA)
−1 = ϵA(ω)/ϵAB(ω).

(composition, frequency)

A

B
0

1
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Quantum analogy

Periodic system, reciprocal lattice (wavevectors) {G};
average: G = 0.

(ϵLL
GG′)−1 ≡ [Ĝ · (ϵGG′Ĝ′)]−1 =

1
ϵab

[u − BLL
GG′ ]−1

BLL
GG′ = Ĝ · BG−G′Ĝ′ −→ Ĥ Hermitian operator (like a

Hamiltonian in QM),
u −→ ε complex ’energy’,

ϵab

ϵLL
M

= (u − BLL)−1
00 /ϵab −→ Ĝ00(ε) = ⟨0|(ε− Ĥ)−1|0⟩ .

The macroscopic inverse longitudinal permittivity is
analogous to a Q.M. Green’s operator projected onto the
macroscopic state |0⟩ ≡ |G = 0⟩.



Quantum analogy

Periodic system, reciprocal lattice (wavevectors) {G};
average: G = 0.

(ϵLL
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Haydock’s recursion

|0⟩ ≡ |G = 0⟩, |−1⟩ ≡ 0. Iteratively apply Ĥ and
orthogonalize:
Ĥ|n − 1⟩ = bn|n⟩+ an−1|n − 1⟩+ bn−1|n − 2⟩ −→
Orthonormal basis {|n⟩} in which Ĥ is tridiagonal.
an−1 = ⟨n − 1|Ĥ|n − 1⟩
b2

n = ||H |n − 1⟩ ||2 − a2
n−1 − b2

n−1.

Ĥ → BLL
GG′ = Ĝ · BG−G′Ĝ′

Ĥ|n⟩ is obtained by multiplying ψn(G) ≡ FT [ψn(r)] = ⟨G|n⟩
1 by Ĝ (direction of G in reciprocal space,
2 B(r) in real space after IFT,
3 Ĝ· in reciprocal space after FT,

→ an and bn without matrix multiplications!
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orthogonalize:
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Theory summary

There are microscopic operators Ô whose macroscopic
counterpart ÔM obeys

Ô−1
M = ⟨(Ô−1⟩ = ⟨0|Ô−1|0⟩ ,

i.e., they are averagable, invert some operator and project onto
macroscopic state.

For example
ϵ̂LL

ϵAB
= u − B̂LL for binary metamaterials in the

nonretarded regime.
Haydock’s recursion: Construct basis {|n⟩} and Haydock
coefficients an, bn: apply Ô, orthogonalize, normalize,
repeat. . . Alternate between real and Fourier space, avoid big
matrices.
Initialize with macroscopic state |0⟩ = |G = 0⟩ in reciprocal
(Fourier, wave-vector) space.
Ô → tridiagonal matrix with an in the main diagonal, bn in the sub-
and supradiagonals, and 0 elsewhere.



Continued fraction

Macroscopic response relates to element (0,0) of the inverse
of a tridiagonal symmetric matrix with elements u − an, −bn,

1
ϵLL
M

=
1
ϵab

1

u − a0 −
b2

1

u−a1−
b2

2

u−a2−
b2
3

...

, (1)

an, bn depend only on geometry.
u has all the information about composition and frequency.
Compute an, bn once, obtain ϵM for many compositions and
frequencies substituting u = u(ω) = 1/(1 − ϵB(ω)/ϵA(ω)).
Allows for dispersion and dissipation. Useful for dielectrics
and/or metals.
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Extensions

Retardation. Lengthscale of structure comparable to
wavelength of light (or even larger).
More than two components.
Anisotropic components.
All of the above.
Obtain permittivity, temporal and spatial dispersion,
electromagnetic fields, photonic bands, Green’s functions,
reflection amplitudes, optical activity (chirality),
permeability, non-linear fields, non-linear response. . .



Example

Full spectra as expensive as a single value.
2D binary case runs in a few seconds in one core of an old
(12 years) laptop.
Easily parallelizable using PDL::ParallelCPU
(set_autopthread_targ and
set_autopthread_size).
Can be used to tune resonance frequencies, transmission,
absorption and reflection spectra, polarization, etc. Allows
design of photonic devices through optimization of their
geometric parameters.
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Classes, Roles

Join pieces to build programas (choose Geometry;
Haydock; dielectric Tensor, Field, Green’s function. . . ).
Obtain Geometry from characteristic function, 2D
pixelated image, dielectric function, dielectric tensor:
Photonic::Geometry::FromB, ::FromImage2D,
::FromEpsilon, ::FromEpsilonTensor consume
the Photonic::Roles::Geometry role.
Calculate Haydock coefficients from the nonretarded,
longitudinal permittivity ϵ of binary system, from the wave
equation of retarded multicomponent system using spinor
representation, etc. Photonic::LE::NR2::Haydock,
::WE::S::Haydock. . . consume the
Photonic::Roles::Haydock role.
. . .
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Application example

Bouligand structure
Bands, forbidden gap for circularly polarized light of one
helicity −→ strong metallic like reflections, circularly
polarized.
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Conclusions

Recursive procedures based on Haydock’s representation.
Maxwell’s equations translated to Hermitian or symmetric
operators that act efficiently alternating between real and
reciprocal (Fourier) space.
Macroscopic response, temporal and spatial dispersion,
spectra, photonic bands, microscopic fields.
Metamaterials with arbitrary composition and geometry.
Dielectric, metals, dispersive, dissipative. . .
Implemented in open/free computational package Photonic
using Perl with Moo objects (classes, roles) and the Perl Data
Language PDL packages for efficient number crunching.

W. Luis Mochán, Guillermo P. Ortiz, doi:10.48550/arXiv.2309.11632


