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What is it?

A package to compute the optical properties of metamaterials
and photonic crystals.
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Metamaterials

Example: split rings

Material made from a mixture of particles of ordinary materials,
properties usually differ from those of its components.

@ LC like resonances in e, .
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Metamaterials

Example: split rings

Material made from a mixture of particles of ordinary materials,
properties usually differ from those of its components.

@ LC like resonances in e, .
@ Canhave e < 0and i < 0, but n? = ex > 0, i.e., real index of

refraction, propagation of e.m. waves. —
@ Exotic behavior from mix of ordinary materials, negative index @% @i

of refraction n < 0.



Left-handed materials
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@ but S (energy flux) would be opposite to k (phasae §g :@;ﬁ
velocity). Group velocity opposes phase velocity. N



Negative refraction
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Metasurfaces
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@ Lateral phase controlled through geometry-dependent
resonances. Controllable, polarization dependent
refraction, beyond Snell’s law. @% o




Metasurfaces
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@ Lateral phase controlled through geometry-dependent
resonances. Controllable, polarization dependent
refraction, beyond Snell’s law. %[ﬁ a8
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Metalenses
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Photonic crystals
Superlattice

Photonic bands/gaps
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Photonic crystals
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The problem

@ The optical properties of
these materials is
determined not only by
their composition,

@ but also by their geometry
(size, shape).
@ ;How to calculate them?




The problem

@ The optical properties of
these materials is
determined not only by
their composition,

@ but also by their geometry
(size, shape).

@ ;How to calculate them?
o Effective response.
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Macroscopic is not any average
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Theory

Macroscopic is not any average

e D=cE

@ (D) =Dy = eyEpy = ey (E)

® ey # (€) as (eE) # (¢)(E)

@ (¢) is meaningless

@ Find some operator whose average does have a meaning.




Macroscopic response

Example: Small scale, no retardation, longitudinal response

@ D' obeys the same equations with the same sources as
the external longitudinal E field: V x Dt = 0,
V- Dt = 47p .

@ D! isthe external longitudinal E®* field.

@ D' has no spatial fluctuations induced by the texture.
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Macroscopic response

Example: Small scale, no retardation, longitudinal response

D" obeys the same equations with the same sources as
the external longitudinal E field: V x Dt = 0,

V- Dt = 47p .

D" is the external longitudinal E®* field.

D" has no spatial fluctuations induced by the texture.
EL _ (eLL)_1 DL

EL = (cth)ad D

(f) ™" = (")aa

@ The macroscopic response to an external excitation is

simply the average of the corresponding microscopic
response.




Periodic binary system

eg if r €inclusion,
ea if r € matrix

° e(r):{




Periodic binary system

ea if r € matrix
@ Characteristic function of unit cell

1 if r € inclusion,
o= { 0 if r € host (geometry)

eg if r € inclusion,
° «(r)= { B




Periodic binary system

eg if r €inclusion,
@ ¢(r)= . .
ea if r € matrix
@ Characteristic function of unit cell

1 if r € inclusion,
o= { 0 if r € host (geometry)

® ¢(r) = (ea — eagB(r)) = eap(u — B(r))

@ cAB = €A — €B

@ Spectral variable u= (1 — eg/ea) ™" = ea(w)/eap(w).
(composition, frequency)




Quantum analogy

@ Periodic system, reciprocal lattice (wavevectors) { G};
average: G = 0.
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Quantum analogy

@ Periodic system, reciprocal lattice (wavevectors) { G};
average: G = 0.

R )
° (o) " =16 (e @) = v~ Bl

o Bi, = G- Bg G — H Hermitian operator (like a
Hamiltonian in QM),
u — ¢ complex ‘energy’,
€ab _ ~ AL
6% = (u—B")yq /eab — Goo(€) = (0](= — H)~'(0) .
M
The macroscopic inverse longitudinal permittivity is
analogous to a Q.M. Green’s operator projected onto the

macroscopic state |0) = |G = 0). # @;ﬁ@



Haydock’s recursion

@ |0) = |G =0), |-1) = 0. lteratively apply A and
orthogonalize:

® Hin—1) =ba|n) + ap_1|n—1) + by_1|n—2) —
Orthonormal basis {|n)} in which H is tridiagonal.
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Haydock’s recursion

@ |0) = |G =0), |-1) = 0. lteratively apply A and
orthogonalize:

® Hin—1) =ba|n) + ap_1|n—1) + by_1|n—2) —
Orthonormal basis {|n)} in which H is tridiagonal.

@ a,_1=(n—1|Hn-1)
by =I[[HIn—1) |2 —a_; — b3_;.

o /:/ — BéLG, = é BG_GIGI

@ Hn) is obtained by multiplying vn(G) = FT[wn(r)] = (G|n)

@ by G (direction of G in reciprocal space,

@ B(r) in real space after IFT,
© G: inreciprocal space after FT,

— ap and by, # 858
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Haydock’s recursion

@ |0) = |G =0), |-1) = 0. lteratively apply A and
orthogonalize:

® Hin—1) =ba|n) + ap_1|n—1) + by_1|n—2) —
Orthonormal basis {|n)} in which H is tridiagonal.

@ a,_1=(n—1|Hn-1)
by =I[[HIn—1) |2 —a_; — b3_;.

o /:/ — BéLG, = é BG_GIGI

@ Hn) is obtained by multiplying vn(G) = FT[wn(r)] = (G|n)

@ by G (direction of G in reciprocal space,

@ B(r) in real space after IFT,
© G: inreciprocal space after FT,

— ap and b, without matrix multiplications! %%, o



Theory summary

@ There are microscopic operators O whose macroscopic
counterpart Oy obeys

w = (07" =(0]0670),

i.e., they are averagable, invert some operator and project onto
macroscopic state.

ALL
For example *— = u — BLL for binary metamaterials in the

€AB
nonretarded regime.

Haydock’s recursion: Construct basis {|n)} and Haydock

coefficients a,, by: apply O, orthogonalize, normalize,

repeat. .. Alternate between real and Fourier space, avoid big

matrices.

Initialize with macroscopic state |0) = |G = 0) in reciprocal

(Fourier, wave-vector) space. £its
O — tridiagonal matrix with a, in the main diagonal, b, in the sub- %% By
and supradiagonals, and 0 elsewhere.



Continued fraction

@ Macroscopic response relates to element (0,0) of the inverse
of a tridiagonal symmetric matrix with elements u — an, —bp,
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Continued fraction

@ Macroscopic response relates to element (0,0) of the inverse
of a tridiagonal symmetric matrix with elements u — an, —bp,

= ! , (1)

2
€M aby— gg— i
u—ag—

3
u—ap——2-

@ ap, b, depend only on geometry.

@ u has all the information about composition and frequency.
@ Compute ap, b, once, obtain ey for many compositions and
frequencies substituting v = u(w) = 1/(1 — eg(w)/ea(w)).

@ Allows for dispersion and dissipation. Useful for dielectrics
and/or metals. %% &5
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Extensions

@ Retardation. Lengthscale of structure comparable to
wavelength of light (or even larger).

@ More than two components.
@ Anisotropic components.
@ All of the above.

@ Obtain permittivity, temporal and spatial dispersion,
electromagnetic fields, photonic bands, Green’s functions,
reflection amplitudes, optical activity (chirality),
permeability, non-linear fields, non-linear response. ..



Example
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Example

@ Full spectra as expensive as a single value.

@ 2D binary case runs in a few seconds in one core of an old
(12 years) laptop.

@ Easily parallelizable using PDL.: :ParallelCPU
(set_autopthread_targ and
set_autopthread_size).

@ Can be used to tune resonance frequencies, transmission,
absorption and reflection spectra, polarization, etc. Allows
design of photonic devices through optimization of their
geometric parameters.



Classes, Roles

@ Join pieces to build programas (choose Geometry;
Haydock; dielectric Tensor, Field, Green’s function...).
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Classes, Roles

@ Join pieces to build programas (choose Geometry;
Haydock; dielectric Tensor, Field, Green’s function...).

@ Obtain Geometry from characteristic function, 2D
pixelated image, dielectric function, dielectric tensor:
Photonic: :Geometry: :FromB, ::FromImage2D,
::FromEpsilon, ::FromEpsilonTensor consume
the Photonic: :Roles: :Geometry role.

o
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Classes, Roles

Join pieces to build programas (choose Geometry;
Haydock; dielectric Tensor, Field, Green’s function...).

Obtain Geomet ry from characteristic function, 2D
pixelated image, dielectric function, dielectric tensor:
Photonic: :Geometry: :FromB, ::FromImage2D,
::FromEpsilon, ::FromEpsilonTensor consume
the Photonic: :Roles: :Geometry role.

Calculate Haydock coefficients from the nonretarded,

longitudinal permittivity ¢ of binary system, from the wave

equation of retarded multicomponent system using spinor

representation, etc. Photonic::LE: :NR2: :Haydock,
:WE: :S: :Haydock...consume the

Photonic: :Roles: :Haydock role. %%
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Application example




Application example

@ Bouligand structure



Application example

Green's function g¢=2.00 Pol=(1,-i)

Wavenumber ga

Wavevector ka

@ Bouligand structure

@ Bands, forbidden gap for circularly polarized light of one
helicity — strong metallic like reflections, circularly %[ﬁ %ﬁg
polarized. -



Conclusions

@ Recursive procedures based on Haydock’s representation.

@ Maxwell’s equations translated to Hermitian or symmetric
operators that act efficiently alternating between real and
reciprocal (Fourier) space.

@ Macroscopic response, temporal and spatial dispersion,
spectra, photonic bands, microscopic fields.

@ Metamaterials with arbitrary composition and geometry.
Dielectric, metals, dispersive, dissipative. ..

@ Implemented in open/free computational package Photonic

@ using Perl with Moo objects (classes, roles) and the Perl Data
Language PDL packages for efficient number crunching.

W. Luis Mochén, Guillermo P. Ortiz, doi:10.48550/arXiv.2309.11632
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