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1 Introduction

Guillermo Ortiz called our attention recently to Tamm modes, surface modes
that exist at the interface between an homogeneous medium or vacuum and
a crystal, even a 1D crystal with periodicity along the direction normal to
the interface. We do a �rst exercise obtaining the dispersion relation of these
modes.

2 Theory

2.1 System

We consider a system such as that in Fig. 1, made of a semiin�nite super-
lattice consisting of alternating layers a, b of dielectrics with corresponding
dielectric response εa, εb and width da, db. The system is illuminated from
below by a wave with wavevector k0 = (Q, k0), where Q lies on the interface
and

k20 = ε0
ω2

c2
−Q2, (1)

with ε0 the response of the ambient medium. There is also a re�ected wave
with wavevector kr = (Q,−k0). Within each medium there are upgoing and
downgoing waves with wavevectors kα± = (Q,±kα) with

k2α = εα
ω2

c2
−Q2, (α = a, b) (2)

2.2 Re�ection amplitude

The re�ection amplitude of the system may be obtained from a surface
impedance formalism. Without loss of generality, we assume the interfaces
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Figure 1: System consisting of a periodic superlattice made of two alternating
dielectrics with response εa and εb with corresponding widths da and db.
Within each media there are upwards and downwards propagating waves
with wavevectors k± = (Q, k±).
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are parallel to the xy plane and that Q = (Q, 0, 0) points along the y di-
rection. We separate the cases of TE (s) and TM (p) polarization. For
s.polarization, the electric �eld would point along x for all the waves. Thus,
we de�ne the re�ection amplitude rs through

rs =
Erx
Eix

, (3)

where Ei and Er denote the amplitudes of the incident and re�ected �elds.
Similarly, for $p$-polarization the magnetic �eld H would point along x,
suggesting we de�ne the re�ection amplitude rp through

rp =
Hr
x

H i
x

, (4)

We de�ne the surface impedance of a medium as the quotient

Z =
E‖

H‖
, (5)

where E‖ and H‖ are the projections of the amplitude of the wave onto the
surface. Thus, for s polarization we chose E‖ = Ex and H‖ = Hy, while for
p polarization we chose E‖ = −Ey and H‖ = Hy. Then, using Faraday's law
and Ampere-Maxwell's law we obtain the impedance for each medium

Zsα =
q

kα
, Zpα =

kα
qεα

. (α = 0, a, b) (6)

Notice that for downwards moving waves these impedances would change
sign. Thus, for �elds at the surface are given by total �elds at the surface
are related through

Esx = (1 + rs)Eix,

Hs
y = (1− rs)Eix/Zs0 ,

Epy = −(1− rp)Zp0H
i
x,

Hp
x = (1 + rp)H i

x,

(7)

from which we obtain a relation between the surface impedances of the sys-
tem (Zs = Esx/H

s
y , Zp = −Epy/Hp

x) and the re�ection amplitude

Zs =
1 + rs

1− rs
Zs0 ,

Zp =
1− rp

1 + rp
Zp0 ,

(8)
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from which we obtain the re�ection amplitudes

rs =
Zs0 − Zs

Zs0 + Zs
,

rp =
Zp − Zp0
Zp + Zp0

.

(9)

The sign di�erence between the last two expressions is due to our de�nition
of rp in terms of the magnetic instead of the electric �eld amplitudes.

2.3 Normal modes

The normal modes of a system exist whenever the system has a response
without being excited by an incoming external �eld. Correspondingly, the
surface modes are given by the poles of the re�ection amplitude. This means
that the dispersion relation of the surface modes is given implicitly through
the relations

Zs0 + Zs = 0,

Zp0 + Zp = 0.
(10)

2.4 Transfer matrix

In order to apply Eqs. (10), we have to calculate the surface impedances
Zs and Zp of the semiin�nite superlattice. To that end we �rst obtain the
transfer matrix of a single layer. As the �elds within one homogeneous layer
is given by the sum of an upwards and a downwards moving wave, each
characterized by a perpendicular wavenumber (±kα), �eld (Esα±(z) for s
and Hp

α±(z) for p polarization) and surface impedance ±Zα. The parallel
components of the electric and magnetic �elds Eα‖(z) andHα‖(z)| are related
to the upgoing and downgoing �elds through

Esα‖(z) =Esα+(z) + Esα−(z),

Hs
α‖(z) =(Esα+(z)− Esα−(z))Y s

α ,

Epα‖(z) =(Hp
α+(z)−Hp

α−(z))Zpα,

Hs
α‖(z) =(Hp

α+(z) +Hp
α−(z)),

(11)
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which we write as the matrix equations(
Esα‖
Hs
α‖

)
z

=

(
1 1
Y s
α −Y s

α

)(
Esα+
Esα−

)
z

,(
Epα‖
Hp
α‖

)
z

=

(
Zpα −Zpα
1 1

)(
Epα+
Epα−

)
z

,

(12)

where we introduced the surface admittance Y ζ
α ≡ 1/Zζα for each polarization

ζ = s, p. Together with Eζ±(z) = Eζ±(z′)e±ikα(z−z
′) for any two positions

within the layer, allows us to write the �elds at the upper interface of a layer
(u) in terms of the �elds at its lower interface ($l),(

Eζα‖
Hζ
α‖

)
u

= M ζ
α

(
Eζα‖
Hζ
α‖

)
l

(13)

where

M s
α =

(
1 1
Y s
α −Y s

α

)(
eikαdα 0

0 e−ikαdα

)(
1 1
Y s
α −Y s

α

)−1
,

Mp
α =

(
Zpα −Zpα
1 1

)(
eikαdα 0

0 e−ikαdα

)(
Zpα −Zpα
1 1

)−1
,

(14)

yielding

M ζ
α =

(
cos kαdα iZζα sin kαdα

iY ζ
α sin kαdα cos kαdα

)
, (15)

which has the same form for both polarizations. From the transfer matrix of
each layer, we may obtain the transfer matrix of a period as a simple matrix
multiplication,

M ζ = M ζ
bM

ζ
a , (16)

as the parallel �elds E‖ and H‖ are continuous across each interface. Notice
that by construction, the determinant of the transfer matrix is 1.

2.5 Bulk modes

Within a periodic system, the normal modes may be written as a superpo-
sition of Bloch modes, which acquire a phase eipd when translated across a
period of width d = da + db, where p is Bloch's vector. Thus(

Eζ‖
Hζ
‖

)
d

= M ζ

(
Eζ‖
Hζ
‖

)
0

= eip
ζd

(
Eζ‖
Hζ
‖

)
0

, (17)
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i.e., eip
ζd is an eigenvalue of the transfer matrix. Notice that for an in�nite

system, pζ ought to be real in order to avoid divergences at z = ±∞. How-
ever, for semiin�nite systems we may also allow for complex Bloch's vector
as long as its imaginary part is positive, so that the mode decays as z →∞.
The characteristic equation

det(M ζ − Λζ) = (Λζ)2 − Λζ trM + detM, (18)

for the eigenvalue Λζ = eip
ζd may be simpli�ed to

cos pζd =
1

2
trM ζ , (19)

as detM ζ = 1.
As cos is an even function, for any solution p there is also a solution −p.

To identify the correct choice of a solution we may add a small imaginary
part to the dielectric functions, to ensure that p is complex, and choose that
value that has a positive imaginary part.

2.6 Surface impedance

The surface impedance of the system may now be obtained from the eigen-
vector of M ζ ,

(M ζ − Λζ)

(
Eζ‖
Hζ
‖

)
0

, (20)

from which we can read the surface impedance

Zζ =
M ζ

12

Λζ −M ζ
11

=
Λζ −M ζ

22

M ζ
21

=2
M ζ

12

M ζ
22 −M

ζ
11 ±

√
4− (M ζ

11 +M ζ
22)

2

=
1

2

M ζ
11 −M

ζ
22 ±

√
4− (M ζ

11 +M ζ
22)

2

M ζ
21

.

(21)

The signs of the square roots should be chosen in such a way that the surface
impedance has a positive real part, so that energy is dissipated (even if only
in�nitasimally for transparent systems) within the superlattice.

6



2.7 Summary

We have now all the ingredients for the calculation of the re�ection amplitude
and its poles, which yield the normal modes. For example, we could give Q
and ω and the polarization ζ, calculate all wavevectors from Eqs. (1) and (2),
the surface impedance of each medium through Eq. (6), the transfer matrix
of each layer and the complete transfer matrix through Eqs. (15) and (16),
Bloch's vector through Eq. (19), the surface impedance of the superlattice
from Eq. 21 and �nally the re�ection amplitude and/or dispersion relations
from Eqs. (9) and (10).

3 Implementation

In this section we build a computational code to perform the calculations
summarized above for a dispersionless dielectric system. We use the Perl

Data Language PDL.
First we include the required pragmas and packages.

# Calculate and plot the reflection amplitude

# of a dielectric superlattice

use warnings;

use strict;

use v5.12;

use Getopt::Long;

use List::Util;

use PDL;

use PDL::NiceSlice;

use PDL::Graphics::Gnuplot;

Now we initialize the required parameters. I will use units such that the
period is d = 1 and the speed of light is c = 1.

my $eps0=1; # dielectric function of the ambient. Vacuum by default

my ($epsa, $epsb); # dielectric function of the layers

my ($da, $db); # widths of layers a and b

my $im=1e-7; # small imaginary part added to disambiguate

my $Qmin=0; # minimum wavevector

my $Qmax; # maximum wavevector

my $NQ; # number of different wavevectors

my $wmin=0; # minimum frequency

my $wmax; # maximum frequency
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my $Nw; # number of frequencies

my $pol; # polarization

my $filename; # filename for plot

my $title=''; # title for plot

my $cbrange;

my $options=q(

'eps0=f'=>\$eps0, # dielectric function of ambient

'epsa=f'=>\$epsa, # dielectric function of layers a

'epsb=f'=>\$epsb, # dielectric function of layers b

'im=f'=>\$im, # imaginary part to add to epsilons

'da=f'=>\$da, # width of layers a

#'db=f'=>\$db, # width of layers b, d-da

'Qmin=f'=>\$Qmin, # minimum wavevector

'Qmax=f'=>\$Qmax, # maximum wavevector

'NQ=i'=>\$NQ, # number of wavevectors

'wmin=f'=>\$wmin, # minimum frequency

'wmax=f'=>\$wmax, # maximum frequency

'Nw=i'=>\$Nw, # number of frequencies

'pol=s'=>\$pol, # polarization

'filename=s'=>\$filename, # filename for plot

'title=s'=>\$title, # title for plot

'cbrange=s'=>\$cbrange, # optional cbrange "[min,max]"

);

my %options=(eval $options);

die "Bad option definition; $@" if $@;

GetOptions(%options) or usage($options, "Bad options");

usage($options, "Undefined parameters")

unless List::Util::all

{defined $_}

($eps0, $epsa, $epsb, $im, $da, $Qmin, $Qmax, $NQ,

$wmin, $wmax, $Nw, $pol, $filename, $title);

We need a routine to print a usage message and quit when a mistake is
found.

sub usage {

my ($options, $message)=@_;

say $message if defined $message;

say $options;

exit 1;

}
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We check the input parameters and set the remaining parameter(s).

usage($options, "Parameter da should obey 0<=da<=1: $da")

unless 0<=$da<=1;

$db=1-$da; # enforce units so that d=d_a+d_b=1

my %pols=(te=>'s', s=>'s', p=>'p', tm=>'p');

my $polarization=$pols{lc $pol}; # normalize polarization

usage($options, "Polarization should be s, p, TE or TM: $pol")

unless defined $polarization;

my ($ceps0, $cepsa, $cepsb)

=map {$_+$im*i()} ($eps0, $epsa, $epsb); # add imaginary parts

Now we de�ne the wavevector and frequency (Eqs. (1) and (2)) ndarrays
and apply our formulas above. I use dummy arrays so I can thread over all
wavevectors and frequencies.

my $Q=zeroes($NQ)->xlinvals($Qmin,$Qmax)->dummy(1); # Q,w

my $w=zeroes($Nw)->xlinvals($wmin,$wmax)->dummy(0); # Q,w

my $q=$w; # assume c=1

my ($k0, $ka, $kb)=map {mysqrt($_*$q**2-$Q**2)} ($ceps0, $cepsa, $cepsb);

I introduce a square root with branch cut in the negative real axis, so it
yields a non-negative imaginary part. I use thread_define so that it can be
threaded over arrays.

sub mysqrt {

my $a=shift;

my $b=null;

_mysqrt($a, $b);

return $b;

}

BEGIN{

thread_define '_mysqrt(a();[o]b())'=> over {

my ($a, $b)=@_;

my $r=sqrt($a);

$r= -$r if $r->im<0;

$b.=$r;

};

}

I calculate the surface impedance (Eqs. (6)),
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my ($Z0, $Za, $Zb)=$polarization eq 's' # Q,w

? ($q/$k0, $q/$ka, $q/$kb)

: ($k0/($ceps0*$q),$ka/($cepsa*$q),$kb/($cepsb*$q));

the transfer matrices (Eqs. (15)),

my ($Ma, $Mb)=map { # n,m,Q,w

my ($kd,$Z)=@$_;

pdl([[cos($kd), i()*$Z*sin($kd)],[i()/$Z*sin($kd),cos($kd)]])

->mv(-1,0)->mv(-1,0); #m,n,Q,w

} ([$ka*$da, $Za], [$kb*$db, $Zb]);

the total transfer matrix (Eq. (16)),

my $M=$Mb x $Ma; # n,m,Q,w

and the eigenvalue (Eq. (19)).

my $cospd=($M((0),(0))+$M((1),(1)))/2; #Q,w

my $eipd=eipd($cospd); # Q,w

To get the eigenvalue I write a function eipd that takes the cosine and builds
the appropriate complex exponential. I use again thread_define so that I
write the routine for a scalar but then iterate implicitly with the threading
machine.

sub eipd {

my $cospd=shift;

my $eipd=null;

_eipd($cospd,$eipd);

return $eipd;

}

BEGIN {

thread_define '_eipd(c();[o]r())'=> over {

my ($c, $r)=@_;

my $s=sqrt(1-$c**2);

my $eipd=$c+$s*i();

my $mod2=$eipd->abs2;

$eipd=$c-$s*i() if $mod2>1;

$eipd=$c-$s*i() if $mod2==1 && $s->re < 0; # ??

$r.=$eipd;

};

}
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With the transfer matrix and its eigenvalue I can �nally calculate the surface
impedance and the re�ection amplitude (give or take a sign, Eqs. (9))

# Notice that M22->$M((1),(1)) and M21->$M((0),(1))

# as the first index of a pdl designates columns, not rows

my $Z=($eipd-$M((1),(1)))/$M((0),(1)); # Q,w

my $r=($Z0-$Z)/($Z0+$Z); # Q,w

Finally, I plot the result. As I normalized distances with d and took c = 1,
my $variable Q actually means Qd and ω is actually ωd/c.

$filename.=".png" unless $filename=~m/\.png$/;

my $gpw=gpwin('png', output=>"$filename");

my %plotoptions=(title=>$title, xlabel=>'Wavevector Qd',

ylabel=>'Frequency {/symbol w} d/c');

$plotoptions{cbrange}=pdl($cbrange) if defined $cbrange;

$gpw->plot(\%plotoptions, with=>'image', $Q, $w, $r->abs);

4 Results

I run the program to get the magnitude of the re�ection amplitude as a
function of Q and ω.

4.1 Transverse electric

./reflection.pl --eps0 1 --epsa 2 --epsb 3 --im 1e-2 --da .5 \

--Qmax 10 --NQ 500 --wmax 10 --Nw 500 --pol te \

--filename te \

--title "Transverse electric e0=1 ea=2 eb=3 da=.5 db=.5 im=1e-2" \

--cbrange "[0,5]"

4.2 Transverse magnetic

./reflection.pl --eps0 1 --epsa 2 --epsb 3 --im 1e-3 --da .5 \

--Qmax 10 --NQ 500 --wmax 10 --Nw 500 --pol tm \

--filename tm \

--title "Transverse magnetic e0=1 ea=2 eb=3 da=.5 db=.5 im=1e-3" \

--cbrange "[0,5]"
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Figure 2: Re�ection amplitude for transverse electric polarization, for a sys-
tem with ε0 = 1, εa = 2, εb = 3, da = 0.5 and db = 0.5.
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Figure 3: Re�ection amplitude for transverse magnetic polarization, for a
system with ε0 = 1, εa = 2, εb = 3, da = 0.5 and db = 0.5.
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4.3 Discussion

As can be seen from the plots, there is a nice sequence of Tamm modes. we
reduced the cbrange scale to make the structure visible, but I expect the
�eld ampli�cation may be as large as the inverse of the �ctitious imaginary
part I added to the ε's. As the modes seem to be narrow, I do a closeup
below.

./reflection.pl --eps0 1 --epsa 2 --epsb 3 --im 1e-3 --da .5 \

--Qmin 5 --Qmax 6 --NQ 500 \

--wmin 5 --wmax 6 --Nw 500 \

--pol te --filename te_cu \

--title "Transverse electric e0=1 ea=2 eb=3 da=.5 db=.5 im=1e-3" \

--cbrange "[0,10]"

Figure 4: Re�ection amplitude for transverse electric polarization, for a sys-
tem with ε0 = 1, εa = 2, εb = 3, da = 0.5 and db = 0.5.

./reflection.pl --eps0 1 --epsa 2 --epsb 3 --im 1e-3 --da .5 \

--Qmin 7 --Qmax 8 --NQ 500 \
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--wmin 6 --wmax 7 --Nw 500 --pol tm \

--filename tm_cu \

--title "Transverse magnetic e0=1 ea=2 eb=3 da=.5 db=.5 im=1e-3" \

--cbrange "[0,10]"

Figure 5: Re�ection amplitude for transverse magnetic polarization, for a
system with ε0 = 1, εa = 2, εb = 3, da = 0.5 and db = 0.5.

5 Summary

Through a simple transfer matrix formalism we obtained the transfer matrix
and from it the surface impedance, re�ection amplitude and surface modes of
a dispersionless dielectric superlattice. We found Tamm modes for both TE
and for TM polarizations, though the modes seem to couple more strongly in
the TE than in the TM case, i.e., better tuning would be required to excite
them in the TE case, though the ampli�cation of the �eld is dominated by
the arti�cial imaginary part added to the response and without dissipation
it could reach in�nity. The modes only exist outside of the light cone of the
ambient, as could have been expected, and arise from the photonic bandgaps
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of the superlattice. We still have to explore how the dispersion relations
depend on tunable parameters of the system such as the relative widths of
the layers and their indices of refraction.

6 Appendix

6.1 Metapost code

I include below the metapost code used to produce Fig. 1.

g_use_svg = 0; %0 for postscript, 1 for svg

prologues:=3;

u=1cm;

outputtemplate := "%j-%c.eps";

if g_use_svg > 0:

outputtemplate := "%j-%c.svg";

outputformat := "svg";

fi

beginfig(1)

for i=0 upto 4:

fill unitsquare xscaled 5u yscaled .5u shifted (0,i*u)

withcolor .5green+.5white;

fill unitsquare xscaled 5u yscaled .5u shifted (0,.5u)

shifted (0,i*u) withcolor .5blue+.5white;

drawarrow((0,-.125u)--(.7u,.125u)) shifted(-.7u,0)

shifted(-.2u,0) shifted (2.5u,0) shifted (0,.25u)

shifted(0,i*u);

drawarrow((0,.125u)--(.7u,-.125u))

shifted(.2u,0) shifted (2.5u,0) shifted (0,.25u)

shifted(0,i*u);

drawarrow((0,-.20u)--(.7u,.20u)) shifted(-.7u,0)

shifted(-.2u,0) shifted (2.5u,0) shifted (0,.75u)

shifted(0,i*u);

drawarrow((0,.20u)--(.7u,-.20u))

shifted(.2u,0) shifted (2.5u,0) shifted (0,.75u)

shifted(0,i*u);

endfor;

drawarrow((0,-.1u)--(.7u,.1u)) shifted(-.7u,0)

shifted(-.2u,0) shifted (2.5u,0) shifted (0,-.2u);
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drawarrow((0,.1u)--(.7u,-.1u))

shifted(.2u,0) shifted (2.5u,0) shifted (0,-.2u);

label(btex $\epsilon_a$ etex scaled 1.5,(1u,.25u));

label(btex $\epsilon_b$ etex scaled 1.5,(1u,.75u));

interim ahangle:=180;

drawdblarrow ((0,0)--(0,.5u)) shifted(0.2u,0) shifted (5u,0);

label.rt(btex $d_a$ etex scaled 1.5,(0,.25u) shifted (0.2u,0) shifted (5u,0));

drawdblarrow ((0,0)--(0,.5u)) shifted(0.2u,0.5u) shifted (5u,0);

label.rt(btex $d_b$ etex scaled 1.5,(0,.75u) shifted (0.2u,0) shifted (5u,0));

endfig;

end.

I run the metapost code as shown below, and it produces a postcript �le
named notas-1.eps.

mpost notas
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